大小单双网址

  • <tr id='bO8JTv'><strong id='bO8JTv'></strong><small id='bO8JTv'></small><button id='bO8JTv'></button><li id='bO8JTv'><noscript id='bO8JTv'><big id='bO8JTv'></big><dt id='bO8JTv'></dt></noscript></li></tr><ol id='bO8JTv'><option id='bO8JTv'><table id='bO8JTv'><blockquote id='bO8JTv'><tbody id='bO8JTv'></tbody></blockquote></table></option></ol><u id='bO8JTv'></u><kbd id='bO8JTv'><kbd id='bO8JTv'></kbd></kbd>

    <code id='bO8JTv'><strong id='bO8JTv'></strong></code>

    <fieldset id='bO8JTv'></fieldset>
          <span id='bO8JTv'></span>

              <ins id='bO8JTv'></ins>
              <acronym id='bO8JTv'><em id='bO8JTv'></em><td id='bO8JTv'><div id='bO8JTv'></div></td></acronym><address id='bO8JTv'><big id='bO8JTv'><big id='bO8JTv'></big><legend id='bO8JTv'></legend></big></address>

              <i id='bO8JTv'><div id='bO8JTv'><ins id='bO8JTv'></ins></div></i>
              <i id='bO8JTv'></i>
            1. <dl id='bO8JTv'></dl>
              1. <blockquote id='bO8JTv'><q id='bO8JTv'><noscript id='bO8JTv'></noscript><dt id='bO8JTv'></dt></q></blockquote><noframes id='bO8JTv'><i id='bO8JTv'></i>
                上海安昂自动化设备有限公司 | 安昂 网络机柜 上海钣金加工
                全国客服热线:

                13701970579

                行业新闻

                SDRAM通用控制器的FPGA模块化设计

                SDRAM通用控制器的FPGA模块化设计

                摘要: 介绍了一种SDRAM通用控制器的FPGA模块化解决方案。
                关键词: SDRAM控制器;FPGA;VHDL;状态机;仲裁机制

                引言

                同步动态随机存储器(SDRAM),在同一个CPU时钟周期内即可完成数据的访问和刷新,其数据传输速度远远大于传统的数☉据存储器(DRAM),被广泛的应用于高速数据传输系统中。基于FPGA的SDRAM控制器,以其可靠性高、可移植性强、易于集成的特点,已逐渐取代了以往的专用∴控制器芯片而成为主流解决方案。然而,SDRAM复杂的控制逻辑和要求严格的时序,成为开发过程中困扰设计人员主要因素,进而降低了开发速度,而且大多数的基于FPGA的SDRAM控制器都是针对特定的SDRAM芯片进行设计,无法实现「控制器的通用性。本文介绍一种通用SDRAM控制器的FPGA模块化解决方案。

                SDRAM及其控制过程

                SDRAM控制逻辑复杂,命令☆种类多样,需要周期性刷新操作、行列管理的等多重操作。

                SDRAM首先要进行初始化操作。在上电后等ζ待100ns,至少执行1条空操作,然后对所有页执行预充电操作,接着向各页发出两条刷新操作指令,最后执行SDRAM工作模式的设定LMR命令用来配置SDRAM工作模式ω 寄存器。SDRAM工作寄存器可以根据具体应用的需要进行设置。

                初始后的SDRAM在得到了RAS、CAS、WE的值后开始执行相应的命令。在对SDRAM进行读、写过程中,必须要先进』行页激活ACT操作,保证存储单元是打开的,以便从中读取地址◎或者写入地址,然后通过预充电PHC命令实现来关闭存储单∴元。在进︾行写操作时,内部的列地址和数据都会被寄存,而进行读操作时,内部地址被寄存,数据的存储则发生在CAS 延迟时间(通常为1~3个时钟周卐期)后。最后,操作终止:当SDRAM顺次的进行读、写操作后,当到达到突发长度或者突发终止指令BT出现时,SDRAM将终止其操作。
                    
                模块化的SDRAM控制器设计

                在SDRAM控制器的FPGA实现方案中,采用了FPGA的自底向上的模块化设计思想,首先分析顶层模块的功能,再将其功能△分类细化,分配到不同的子模块去实现,然后自底向上的先逐步完成各个子模块的设计,最后将子模块相互连接生成顶层模块。经过分析,SDRAM控制器应实现的功能有:为SDRAM提供刷新控制以保持SDRAM中的数据;对主机的命令进行仲裁,将下一步要执行的命令翻译成可与SDRAM连◣接的信号;为SDRAM的读、写生成数据路径。因此,根据SDRAM的指令操作特点将SDRAM控制器划分为接口控制模块、命令生成模块和数据路∮径模块三个主要模块(图1)。

                图1  SDRAM控制器的FPGA模块化设计方案

                下面,对其接口信号进行介绍,需要注⌒ 意的是,为了实现该︾控制器的通用性,ADDR、DATAIN、DATAOUT、DQ、DOM信号设计成可根据SDRAM的容量改变的形式。

                与主机接口信号:CLK(系统时钟);RESET(系统复位);CMD[2:0](译码指令);CMDACK(指令应答信号);ADDR[ASIZE-1:0](地址线);DATAIN/DATAOU[DSIZE-1:0](输入、输出数据总线);DM[(DSIZE/8)-1:0](数据掩码)。

                与SDRAM接口信号:SA(地址线);BA(页地址);CS_N(片选信号);CKE(时钟使◤能信号);RAS、CAS、WE(命令控制信号);DQM[(DSIZE/8)-1:0](SDRAM数据掩码);DQ[DSIZE-1:0](双向数据线)。

                各个模块的设计与实现

                接口控制模块

                接口控制模块主要实现的功能是将CMD[2:0]翻译成接口指令和对刷新计数器的控制指令。接口模块在工作过程中首先通过要通过状态机来完成对CMD[2:0]的翻译。在VHDL程序中声明一个用户自定义类型states,根据CMD[2:0]输入来决定状态的转移,完成对CMD[2:0]的解码,部分代码如下:
                type states is(nop,reada,writea,refresh,
                precharge,load_mode);
                signal state : states ;
                ………………
                case cmd is
                 when "011" => state<=refresh;
                 when "111" => state<=nop;
                ………………

                另外,SDRAM需要周期性刷新操作以保持数据。在模块的程序设计中,刷新周期的控制通过一♂个计数器来完成,到达规定的计数周期数时№,接口模块通过REF_REQ信号向SDRAM发出刷新请求。直到SDRAM完成刷新操作,发出REF_ACK刷新应答信号,计数器才重新赋值,开始下一次的计数。

                命令生成模块

                命令生成模块实现对输入的SDRAM指令请求进行仲裁判断的功能,并将仲裁后要执行的指令解码成SDRAM需要的RAS、CAS等信号,从而实现指令对SDRAM的控制。仲裁机制是SDRAM控制器设计不可或缺的一个环节。仲裁机制实现要遵循如下规则:
                *SDRAM在每一刻只有一个指令在执行;
                *先到的指令先执行,如果刷新请求到来♀时,其它命令正在执行中,要等到当前命令执行完成后,才能执行刷新指令;
                *其它指令和刷新请求同时到来时刷新操作先执行。
                经过仲裁判断后,指令将传入命令生成器。命令生成器不仅〇要把指令解码成SDRAM需要的RAS、CAS等信号,同时还要对命令执行的时间进行控制。下面的例程仅供参考。
                if (do_state=refresh or do_state=reada or
                 do_state=writea
                 or do_state=precharge or
                 do_state=load_mode)then
                command_delay(7 downto
                0)<="11111111";
                 ------移位寄存器初值
                command_done<='1';
                ………………
                else
                 command_done<=command_delay(0);     
                  移位操作
                 command_delay(6 downto 0)<=
                 command_delay(7 downto 1);
                 command_delay(7)<='0';
                end if;

                下面介绍输入的指令为writea和reada指令№时模块所进行的操作。当SDRAM的writea和reada指令到▂来时,将引发一系列指令的执行,和其它指令相比需要更多的附加时间。所以,在这种情况下需要声明第二个移位寄存器rw_shift来完成这两个指令的附加时间▲的实现。rw_shift的工作原理和第々一个移位寄存器command_delay是一样的,需根据读、写的时间决定rw_shift的位数。

                最后一个移位寄存器oe_shift用来为数据通道生成数据输入、输出使能信号oe。对于非页模式的读写来说,oe保持有效的时间取决于突发长度,需要注意的是,读操作时,oe有效的起始▓时间取决于CAS延时时间,而对于写操作,则在写指令开始时oe就是有效的。

                数据路径模块

                数据路径模块的作用是在writea和reada命令期间生成数据的路径。在用VHDL语言程序中,用简单的赋值语句就可以实现数据路径模块。

                通用性的实现

                根据SDRAM控制器的FPGA模块化设计方案生成的FPGA控制器易于修改和扩展,具有可通用的特性。在具体的应用中,针对不同的SDRAM,并不需要更改SDRAM控制器结构,只要根据datasheet中的SDRAM的容量将地址线数和数▂据的位数做相应修改,再依据SDRAM的时序和读╱、写∞速度更改接口控制模块中的时间信号的周期,如刷新周期、命令生成模块∩中移位寄存器的位数和初值等,这样就可以对不同的SDRAM进行控制。最后,生成的SDRAM控制器顶层模块如图2所示。为了证明该控制器设计方案的可行性和@ 通用性,在Altera公司的Cyclone系列FPGA——EP1C6Q240C8中生成SDRAM控制器,根据数据手册中SDRAM的参数对控制器各模块的VHDL语言程序做相应的改动,实现了对三星公司的8MByte SDRAM K4S641632E和2MByte SDRAM K4S161622D的控制,均达到了100MHz的读、写速度。

                图2 SDRAM控制器接口◆

                新闻资讯

                HC通用控制柜系列

                联系人:于经理

                手 机:021-39927102

                电 话:021-39927102

                邮 箱:anang@melissahays.com

                Q Q:280982412

                地 址:上海市嘉定区马陆镇浏翔公路2248弄9号